limit theorems for SDEs with irregular drifts

Jianhai Bao

Tianjin University

Outline

- Motivations
- LLN and CLT: SDEs with Hölder drifts
- LLN and CLT: SDEs with discontinuous drifts
- Main results

This talk is based on a joint work with **Jiaqing Hao**.

- $(X_t)_{t>0}$: a Markov process; μ : the IPM;
- Additive functional: $\int_0^t f(X_s) ds$, f: observable.
 - ▶ SLLN: $\frac{1}{t} \int_0^t f(X_s) \, \mathrm{d}s \to \mu(f)$ a.s.
 - ▶ CLT: $\frac{1}{\sqrt{t}} \int_0^t (f(X_s) \mu(f)) \, \mathrm{d}s$ converges weakly a normal r.v.
- Methods:
 - moment method (Markov (1908));
 - Bernstein's block method (Bernstein (1926));
 - ▶ martingale method+Poisson equation (Papanicolaou, et al. (1977));
- Applications: e.g. large deviations and moderate deviations;

Limit theorems:

- Nondegenerate setting: Ergodicity in the total variation + mixing condition, e.g., Kulik'18; L^2 -ergodicity;
- Degenerate setup: ergodicity under the (quasi)-Wasserstein distance,
 e.g.
 - ▶ functional SDE (Itô-Nisio'64): $dX(t) = b(X_t) dt + \sigma(X_t) dW(t)$;
 - 2D N-S equations with degenerate stochastic forcing.

Existing works for SDEs/SPDEs with regular coefficients:

- Weak LLN + CLT (Komorowskia and Walczuk, 2012):
 - Observable: Lipschitz;
 - W₁-exponential contractivity;
 - Dissipative SDEs with regular drifts;
 - Convergence rate is unavailable.
- General framework (Shirikyan'06):
 - Strong LLN: uniform mixing & uniform moment estimate;
 - CLT: uniform mixing & uniform exponential estimates;

- Exponential ergodicity of functional SDE via Wasserstein coupling (B.-Wang-Yuan, 2020a);
- Convergence rate of LLN and CLT (B.-Wang-Yuan, 2020b);
- Convergence rate of LLN and CLT (Wang-Wu-Zhu, 2020);
- Numerical LLN and CLT:
 - ▶ finite dimension: forward EM (Pagès-Panloup'12, Lu-Tan-Xu'21), backward EM (Jin'23):
 - infinite dimension: full discretization of parabolic SPDEs (Chen' et al.'23)

Our goals:

- Improve convergence rate;
- Drop exponential estimate;

• SDE:

$$dX_t = (b_0(X_t) + b_1(X_t)) dt + \sigma(X_t) dW_t.$$
 (1)

Assume that

 (\mathbf{H}_b) $b_1:\mathbb{R}^d o\mathbb{R}^d$ is locally Lipschitz and $\exists~\lambda_1,\lambda_2,\ell_0>0$ such that

$$2\langle x-y, b_1(x)-b_1(y)\rangle \le \lambda_1|x-y|^2 \mathbf{1}_{\{|x-y|\le \ell_0\}} - \lambda_2|x-y|^2 \mathbf{1}_{\{|x-y|\ge \ell_0\}},$$

 $b_0 \in C^{lpha}(\mathbb{R}^d)$ for some $lpha \in (0,1)$, i.e., $\exists \ K_1 > 0$ such that

$$|b_0(x) - b_0(y)| \le K_1 |x - y|^{\alpha}, \quad x, y \in \mathbb{R}^d.$$

Assume that

 (\mathbf{H}_{σ}) $\sigma: \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$ is Lipschitz continuous, i.e., $\exists K_2 > 0$ such that

$$\|\sigma(x) - \sigma(y)\|_{\mathrm{HS}}^2 \le K_2|x - y|^2$$

and $\exists \ \kappa > 1$ such that

$$\frac{1}{\kappa}|y|^2 \le \langle (\sigma\sigma^*)(x)y, y \rangle \le \kappa|y|^2.$$

Under (\mathbf{H}_h) and (\mathbf{H}_{σ}) , (1) has a unique strong solution.

- Local solution via Zvonkin transformation (Xie, et al.'20, Zhang-Yuan'21);
- Global solution via life time = T.

Theorem

Assume (\mathbf{H}_b) and (\mathbf{H}_σ) with $\lambda_2 > (K_2\kappa^3)^{\frac{1}{2}}$. Then, for $f \in C_{\mathrm{Lip}}(\mathbb{R}^d)$ and $\varepsilon \in (0,1/2)$, there exist a random time $T_\varepsilon \geq 1$ and a constant C>0 s.t. for all $t > T_\varepsilon$,

$$\left| \frac{1}{t} \int_0^t f(X_s^x) \, \mathrm{d}s - \mu(f) \right| \le C t^{-\frac{1}{2} + \varepsilon}.$$

- When the weight function is constant (Shirikyan'06), the observable is bounded. In our setting, the observable is unbounded.
- In Theorem 2.3 (Shirikyan'06), the convergent rate is $t^{-\frac12+r_v}$ for $r_v:=q\vee\frac{1+v}{4p}$ with any $q<\frac12$ and $v\in(0,2p-1)$
- In our scenario, the convergence rate is $t^{-\frac{1}{2}+r_v}$, in which $r_v:=\frac{1+v}{2p}$ for $v\in(0,p/2-1)$.

W_1 -exponential contractivity

Proposition

Assume (\mathbf{H}_b) and (\mathbf{H}_σ) with $\lambda_2 > (K_2 \kappa^3)^{\frac{1}{2}}$. Then, there exist constants $C^*, \lambda^* > 0$ such that for all $t \geq 0$ and $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$,

$$W_1(\mu P_t, \nu P_t) \le C^* e^{-\lambda^* t} W_1(\mu, \nu).$$

- In [Theorem 3.1, Wang'23]: abstract framework based on the reflection coupling traced back to Priola-Wang' 06;
- In [Theorem 1.3, Luo-Wang'16], \mathbb{W}_p -exponential decay.

W_1 -exponential contractivity

• Auxiliary SDE: for $\widetilde{\sigma}(x)^2 := (\sigma \sigma^*)(x) - \frac{1}{\kappa} I_{d \times d}$,

$$dY_t = b(Y_t)dt + \widetilde{\sigma}(Y_t)d\widetilde{W}_t + \frac{1}{\sqrt{\kappa}}d\widehat{W}_t.$$

Coupling SDE

$$\begin{cases} d\widehat{Y}_t = b(\widehat{Y}_t)dt + \widetilde{\sigma}(\widehat{Y}_t)d\widetilde{W}_t + \frac{1}{\sqrt{\kappa}}\Pi_{Z_t}d\widehat{W}_t, & t < \tau, \\ d\widehat{Y}_t = b(\widehat{Y}_t)dt + \widetilde{\sigma}(\widehat{Y}_t)d\widetilde{W}_t + \frac{1}{\sqrt{\kappa}}d\widehat{W}_t, & t \ge \tau. \end{cases}$$

• Test function (piecewise C^2 -function):

$$f(r) = \frac{\kappa}{2} \int_0^r e^{-\frac{\kappa}{4} \int_0^u \phi(v) dv} \int_u^\infty s e^{\frac{\kappa}{4} \int_0^s \phi(v) dv} ds, \quad r \ge 0,$$

where for $\hbar_0 := \ell_0 \vee ((4K_1)/(\lambda_2 - (K_2\kappa^3)^{\frac{1}{2}}))^{\frac{1}{1-\alpha}}$,

$$\phi(u) := \left((\lambda_1 + \lambda_2) u + 2K_1 u^{\alpha} \right) \mathbf{1}_{\{u \le h_0\}} - \frac{1}{2} \left(\lambda_2 - (K_2 \kappa_2^3)^{\frac{1}{2}} \right) u.$$

 ${
m Jianhai~Bao}$ (Tianjin University)

Assume (\mathbf{H}_{σ}) and

 (\mathbf{H}_b') $b_0 \in C^{lpha}(\mathbb{R}^d)$ satisfying (7) and $\exists \ \lambda, \lambda^* > 0$ such that

$$\langle x - y, b_1(x) - b_1(y) \rangle \le \lambda |x - y|^2$$

and

$$\langle x, b_1(x) \rangle \le -\lambda^* |x|^2 + C_{\lambda^*}.$$

• Functional class: for $p \geq 2$ and $\theta \in (0,1]$, $C_{p,\theta}(\mathbb{R}^d)$ is the collection of all continuous functions $f: \mathbb{R}^d \to \mathbb{R}$ such that

$$||f||_{p,\theta} := \sup_{x \in \mathbb{R}^d} \frac{|f(x)|}{1+|x|^p} + \sup_{x \neq y, x, y \in \mathbb{R}^d} \frac{|f(x) - f(y)|}{\psi_{p,\theta}(x,y)},$$

where

$$\psi_{p,\theta}(x,y) := (1 \wedge |x-y|^{\theta})(1+|x|^{p}+|y|^{p}).$$

Corrector:

$$R_f(x) = \int_0^\infty ((P_t f)(x) - \mu(f)) dt, \quad x \in \mathbb{R}^d.$$

Characterization of asymptotic variance:

$$\varphi_f(x) := \mathbb{E} \Big| \int_0^1 f(X_r^x) \, \mathrm{d}r + R_f(X_1^x) - R_f(x) \Big|, \qquad x \in \mathbb{R}^d.$$

Theorem

Assume (\mathbf{H}_b') and (\mathbf{H}_σ) . Then, for any $f \in C_{p,\theta}(\mathbb{R}^d)$ with $\mu(f) = 0$, $\sigma := \mu(\varphi_f) \geq 0$ and $\varepsilon \in (0, \frac{1}{4})$, $\exists \ C_0 = C_0(\|f\|_{p,\theta}, \sigma, |x|) > 0$ such that

$$\sup_{z \in \mathbb{R}^d} \left(\theta_{\sigma}(z) \middle| \mathbb{P}(A_t^{f,x} \le z) - \Phi_{\sigma}(z) \middle| \right) \le C_0 t^{-\frac{\varepsilon}{4} + \varepsilon}, \quad t \ge 1,$$

where $\theta_{\sigma}(z) := \mathbf{1}_{\{0 < \sigma < \infty\}} + (1 \wedge |z|) \mathbf{1}_{\{\sigma = 0\}}$.

$\mathbb{W}_{\psi_{p,\theta}}$ -exponential contractivity

Proposition

Under (\mathbf{H}_b') and (\mathbf{H}_σ) , for any $p \geq 2$, $\theta \in (0,1]$ and $\mu, \nu \in \mathcal{P}_{\psi_{p,\theta}}(\mathbb{R}^d)$, \exists $C^* \geq 1, \lambda^* > 0$ such that

$$\mathbb{W}_{\psi_{p,\theta}}(\mu P_t, \nu P_t) \le C^* e^{-\lambda^* t} \mathbb{W}_{\psi_{p,\theta}}(\mu, \nu), \qquad t \ge 0,$$

where

$$\psi_{p,\theta}(x,y) := (1 \wedge |x-y|^{\theta})(1+|x|^{p}+|y|^{p}).$$

$\mathbb{W}_{\psi_{p,\theta}}$ -exponential contractivity

• Key inequality:

$$\frac{1}{2}f'(r)(\lambda r + K_1 r^{\alpha}) + \frac{2}{\kappa}f''(r) \le -\frac{1}{2}r^{\theta}, \qquad r \in (0, l_p^*].$$

Test function

$$f(r) = c^* (r \wedge l_p^*)^{\theta} + h(r \wedge l_p^*), \quad r \ge 0.$$

• A direct calculation shows that

$$\frac{1}{2}h'(r)(\lambda r + K_1 r^{\alpha}) + \frac{2}{\kappa}h''(r) = -r^{\theta}, \qquad r \in (0, l_p^*]$$

and

$$\frac{1}{2}f'(r)(\lambda r + K_1 r^{\alpha}) + \frac{2}{\kappa}f''(r)$$

$$= c^* \theta \left(\frac{1}{2}(\lambda r^{\theta} + K_1 r^{\theta + \alpha - 1}) - \frac{2}{\kappa}(1 - \theta)r^{\theta - 2}\right) - r^{\theta}.$$

Proposition

(Proposition 2.10, Shirikyan'0) For a zero-mean martingale (M_k) , $\exists \; \beta, B >$

0 such that

$$\mathbb{E}e^{|M_k - M_{k-1}|^{\beta}} \le B, \qquad 1 \le k \le n.$$

Then, for any $\widetilde{\sigma}>0$ and $\varepsilon\in(0,1/4)$, $\exists~A_{\varepsilon}(\widetilde{\sigma})>0$ such that for any q>0,

$$\sup_{z\in\mathbb{R}} \left| \triangle_{\sigma}(n^{-\frac{1}{2}}M_n, z) \right| \leq A_{\varepsilon}(\widetilde{\sigma})n^{-\frac{1}{4}+\varepsilon} + \sigma^{-4q}n^{q(1-4\varepsilon)}\mathbb{E}|n^{-1}V_n^2 - \sigma^2|^{2q}.$$

SDEs with discontinuous drifts

Scalar SDE:

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t.$$

Assume that

$$(A_1) \exists c_1, c_2, p_0 > 0 \text{ s.t.}$$

$$2xb(x) + (p_0 - 1)|\sigma(x)|^2 \le c_1 - c_2|x|^2.$$

$$\begin{array}{l} (A_2) \ \ c, p_1, \alpha > 0, \ \xi_0, \cdots, \xi_{k+1} \in [-\infty, +\infty] \ \text{with} \ -\infty = \xi_0 < \xi_1 < \cdots, < \\ \xi_k < \xi_{k+1} = \infty \ \text{s.t for all} \ i \in \{1, \cdots, k+1\} \ \text{and all} \ x, y \in (\xi_{i-1}, \xi_i) \end{array}$$

$$2(x-y)(b(x)-b(y)) + (p_1-1)(\sigma(x)-\sigma(y))^2 \le c(x-y)^2$$
$$|b(x)-b(y)| \le c(1+|x|^\alpha+|y|^\alpha)|x-y|$$

SDEs with discontinuous drifts

Assume that

(A_3) $\beta > 0$ such that

$$|\sigma(x) - \sigma(y)| \le c \left(1 + |x|^{\beta} + |y|^{\beta}\right)|x - y|.$$

(A₄) $\sigma(\xi) \neq 0$ for all $i \in \{1, \dots, k\}$.

The transformation

The transformation (Müller-Gronbach & Yaroslavtseva, 2022):

$$G_{z,\alpha,\nu}(x) = x + \sum_{i=1}^{k} \alpha_i(x - z_i)\phi((x - z_i)\nu),$$

where

- $\qquad \qquad \alpha := (\alpha_1, \cdots, \alpha_k);$
- $\phi(x) = (1-x^2)^4 \mathbf{1}_{[-1,1]}(x);$
- $\nu \in \rho_{z,\alpha}$ with

$$\rho_{z,\alpha} = \begin{cases} \frac{1}{8|\alpha_1|}, & k = 1\\ \min\left(\left\{\frac{1}{8|\alpha_i|} : i \in \{1, \dots, k\} \cup \left\{\frac{1}{2}(z_i - z_{i-1}), i = 2, \dots, k\right\}\right\}\right),\\ k \ge 2. \end{cases}$$

LLN and CLT: SDEs with discontinuous drifts

Theorem

Under (A_1) - (A_4) , the LLN (in Theorem 1) and the CLT (in Theorem 3) holds true, respectively.

• Poisson approach: very nice regularity.